
Introduction to PIL
PIRCH Interpreted Language (PIL) is an internal scripting language of PIRCH Internet Relay Chat client
software.

PIL’s language structure is similar in syntax and structure to PASCAL, combined with the established syntax
of PIRCH’s alias coding structure.

Using PIL
PIL Scripts are NOT PIRCH aliases, nor are PIRCH aliases PIL scripts. While alias constructs and PIL
statements have thier similarities, there are disctinct language differences, and there are key reasons for
these differences which I will not cover in this document as it is slightly off topic.

PIL scripts however are installed into the PIRCH alias window/editor, and the contents of scripts are stored
within the PIRCH alias file (by default aliases.paf). Its recommended that you adopt a naming convention for
PIL scripts, in which the scriptname is enclose in square brackets, ie [MYSCRIPT]. This allows your PIL
scripts to be sorted to the bottom of the alias editor list, keeping all script together. While this convention is
recommended, it is not a requirement.

The alias window in PIRCH has a couple of new features that make installing individual PIL scripts easy. By
right clicking the alias name list in the alias window, a popup menu is displayed which contains two (2) PIL
related commands.

Add PIL Script Loads a PIL script from a text file and installs it into the alias window
Extract PIL Script Saves a PIL script to a text file

Both of the above commands use the [] bracket convention for naming files. When a PIL script is loaded,
PIRCH will place brackets around the name. When a PIL script is extracted, the brackets are removed.
Extracting and Adding PIL scripts is useful when you want to share your scripts with others, or you want to
install you scripts written by others.

PIRCH PIL EXTENSIONS
PIRCH (version 0.82) introduces two new commands that are used specifically for executing PIL scripts.
These are covered in detail below and in the PIRCH help file.

/RUNSCRIPT
PIL scripts are executed with the PIRCH command /RUNSCRIPT.
The format for the command is:

/RUNSCRIPT <scriptname> <parameters>.

Unlike aliases, you can not simply type /scriptname. You can however make an alias to run the script. An
example will better demonstrate this point. Lets assume you have a script, called [MYSCRIPT], an you wish
to simply type /MYSCRIPT to execute it... add an alias as follows

myscript:/runscript [myscript] *1

NOTE: typing /[myscript] will NOT work.

Passing information to a script
PIL scripts can access a number of system defined variables, such as $date to retrieve a number of pieces
of information. However the most useful information can be the parameter string which you pass to your
script when you execute a /runscript command. The parameters can be any information which your script
requires or can make use of and can be accessed from within the script using the following variables

$1..$nn Individual parameters (space delimited)
*1..*nn Sequential set of parameters

(sequential command lines parameters start with the number provided)

For example: executing /runscript [myscript] My name is Bob
would make $1 within your script equivalent to the word “My”, $2 to the word “name” and so on. *1 would

be equivalent to “My name is Bob”, *2 would be “name is Bob” and so on. (each without the quote marks)

/CALLBACK
/CALLBACK is the probably the most advanced, and therefore, unfortunately most complicated command to
understand and master. Basically /CALLBACK allows you to install a script to handle a variety of incoming
server messages. This is similar to what PIRCH events do, and in most cases use of simple ON XXXXX is
recommended. However, not all server messages are accessible in events and thats where use of these
server callbacks can become useful.

For example, when you type /whois <nickname>, the IRC server returns up to four (4) distinct messages to
PIRCH, and PIRCH will normally display the information for you in the server/status window. But lets
assume you want to do something with this specific with this information; and since there is no ON XXXX
event which covers the information returned by /whois, you can install a PIL script to handle/manipulate the
returned information as desired.

The format for the /CALLBACK command is as follows:

/CALLBACK <server rpl code> <scriptname>

Obviously to make use of this command and implement callback features you need to have information
about server replies/messages and the format of these messages, all of which can be found in RFC1459
which is the official RFC protocol specification for IRC. Albeit to some degree out of date, the RFC document
is still the most reliable and informative source. This document can be obtained from all complete RFC list
sources and at last check was available at ftp.undernet.org

When a callback script is installed, PIRCH passes all the information contained in the server reply/message
to the script as a parameter, when PIRCH encounters the specific reply/message code. This information can
then be disseminated by the script in whatever fassion you desire.

Intended Audience
This document is intended for as a reference guide for persons requiring detailed descriptions of the
language syntax, structure and components. Much of the document is intended for persons who have at
least a fundamental understanding of structured computer languages, and the workings of procedure,
functions, conditionals and loops.

This document is structured as a reference guide, and is NOT a step by step guide to writing PIL scripts.

PIL Language Definition and Structure

PIL Language Definition and Structure

Embedding Comments in Scripts
Before proceeding with the technical information, a word about commenting your script code. PIL uses the
pascal method for placing comments directly within script code, by embedding comments within curly braces
{ }. The PIL compiler ignores anything it encounters following an open curly brace { until it encounters a
closing curly brace } (with the exception of string literals that contain a curly brace character.)

Although for the most part, PIL scripts tend to be readable, and understandable on their own, commenting of
script code is a fundamental part of any programming language and should not be ignored.

Commenting can serve multiple purposes, providing the programmer with ability to internally document
complicated sections of script code for future reference, possibly indicating why a possible method was
chosen over another. If you distribute your scripts for others to use it maybe important for your intended
audience to understand what a script does and/or how it does it.

Commenting can also aid in debugging: by commenting out statements, you can see how it changes the
result of your script.

Keywords and Identifiers
PIRCH reserves a number of key words for special purposes, generally representing built-in commands and
language symbols. Identifiers are words/symbols which you can create to identify variables.

BEGIN END FOR TO
WHILE DO IF THEN
ELSE VAR

Each of the above keywords are discussed in detail later in this document.

Variables
In PIL as in most other programming/scripting languages, variables hold the data on which the script
operates. PIL currently supports two primary variable types:

Strings Alpha-numeric character arrays
Numbers Numeric values
(internally stored as a 32 bit signed integer with a value range of -2147483648..2147483647

Declaring Variables

PIL does not currently use an explicit forced variable declaration system, instead PIL will dynamically create
and allocate variables as required during the script compilation phase. The disadvantage is that PIL must
provide a method of type identification for variables according to the identifier used.

The variable identifier used will explicitly declare it type by the following rule: all string variables will be
prefixed with a single $ symbol and numeric variable types my not contain the $ symbol.

$workstr is explicitly typed as string
numvar is explicitly typed a numeric variable

Attempting to assign a string expression to a numeric variable will result in a compilation error of “type
mismatch”, as will assignment of a numeric expression to a string variable. (see STRTOINT and INTTOSTR
function later in this document for type conversion)

Literal Values
A literal value is simply a declared number or string value. String literals must be enclosed within single
quotation marks (‘).

50 Declares a numeric literal value
'hello' Declares a literal string value

Constants
At its current stage of development, PIL does not support strict constants. However, programmers can
achieve almost identical functionality by using variable declarations (with immediate value assignment).

Example: five := 5; would be functionally equivalent to a strict constant declaration. The only difference is
that should an assignment attempt be made upon the variable, the assignment would be permitted and the
script would continue to execute, whereas attempted assignment to a strict constant would result in a fatal
error at compilation time.

Assignment of Values to Variables
The values of variable can be changed through one of two methods:

A. Assignment of an expression
Assignment is achieved by the use of the := symbol, with a variable on the left side and a like type
expression on the right.

numvar := 5 * 20; would assign the value 100 to numvar
$s := ‘hello world’; would assign ‘hello world’ to the $s
$s := 5 * 20; would result in a ‘type mismatch’ error

Once an assignment is made, any usage of the variable in an expression would actually be using
the value associated with the variable. The value of variable may be changed during the execution
of a script as often as you like.

B. Use of a variable as a VAR type parameter to a procedure/function call

Attempting to assign a string expression to a numeric variable will result in a compilation error of “type
mismatch”, as will assignment of a numeric expression to a string variable. (see STRTOINT and INTTOSTR
function later in this document for type conversion)

Global System Variables
Global systems variables contain information that may change according to system state, however are not
true PIL variables, meaning that you may not directly values to them, or use these variables as VAR
parameters in procedure and/or function calls. In all cases these identifiers begin with the $ symbol

$day string Returns the current day of the week
$date string Returns the current system sate
$time string Returns the current system time
$server string Returns the name of the server to which

the windows from which the script is called
is associated

$host string returns your current local host name
$ip string returns your IP address in 4 octet form
$me string returns your current nickname
$netid string returns the server’s network id (if assigned)
$audience string returns the channel/nickname of the

window from which the script is called
$topic string returns the channel topic

(only if called from a channel)
$mode string returns the channel mode

(only if called from a channel)
$members string returns the channel member count

(only if called from a channel)
$version string returns the PIRCH version you are running

Procedures and Functions

The following is a list of internally support procedures and functions, each of these is discussed later in this
document.

BREATHE CHAR HALT RANDOM
STRCOPY STRDEL STRINS STRLEN

STRPOS STRMATCH STRUPPER STRLOWER
STRTOKEN INTTOSTR STRTOINT WRITELN
COMMAND

Simple Expressions & Statements

Definitions
An expression combines constants, variables and function results into a single result. There are 3 primary
expression types recognized by PIL: numeric, string and boolean.

Numeric Expressions & Operators
Numeric expressions may be either simple numeric variables, numeric constants numeric literals, or a
mathematical manipulation of numeric identifiers using the following operators.

Mathematical Operators
+ addition
- subtraction
* multiplication
/ division
^ exponential
mod modulus

Bitwise Operators
shl bitwise shift left
shr bitwise shift right
bitand bitwise AND
bitor bitwise OR
bitxor bitwise XOR
bitnot bitwise NOT

Boolean (Logical) Expressions
Boolean expressions result in a return type of either true or false and generally require the use of
comparison symbols and an expression on both the left and right side. While there is no explicit boolean
type declared within the PIL language structure, PIL generates ordinal values for boolean expressions,
where 0 = false and 1 = true.

Symbol Comparison Example
= equal (a = b)
> greater than (a > b)
>= greater than or equal (a >= b)
< less than (a < b)
<= less than or equal (a <= b)

Logical expressions may also include logic operators. Logic operators can be used to evaluate two boolean
expressions located on the left and right sides of the expression. Currently PIL supports the following logical
operators.

Operator Comparison Example
AND Logical And (a and b)
OR Logical Or (a or b)
NOT Logical negation (not b)

The following boolean truth table displays how the above boolean operators affect and expression

 A AND B = C
false | false | false
false | true | false
true | false | false
true | true | true

 A OR B = C
false | false | false
false | true | true
true | false | true
true | true | true

The NOT operator is used to negate a boolean ordinal.
NOT true is equivalent to false
NOT false is equivalent to true

Operator Precedence
PIL interprets all expression from left to right, but applies precedence to operators according to the following
table, ranging from highest precedence to lowest:

Parenthetical ()
NOT, unary minus not, -Expression
exponents ^
multiplication,division,modulus *, /, mod
addition,subtraction +.-
AND,OR,XOR and,or,xor

Examples

2 + 3 * 4 result = 14
multiplication has a higher precedence than addition

4 * (3 + 2) result = 20
parenthesized expression (2+3) is evaluated prior to multiplying by 4.

Single Statements
A statement is either a procedure call or an assignment of an expression or function result to a variable.
Each statement must be terminated with a semicolon (;).

Compound Statements
A compound statement is a group of individual statements, each separated with a semicolon (;). You can use
compound statements anywhere an ordinary statement is allowed. Because compound and single
statements are interchangeable, the term statement will be used to mean either a compound or singular
statement from now on throughout this document.

Simple compound statement construct

begin
 a := b * c;
 $s := 'answer';
 writeln($s,' = ',a);
end;

Repetitive Statements (loops)
PIL normally executes code in a sequential order, top to bottom, left to right, one statement after the other.
However, this default behavior can be modified by use of repetitive statements which makes loops in a
script, repeating operations. and conditional statements which make decisions, selecting one statement over
others and changing the flow of the script.

Repetitive statements cause one or more statements to repeat. There are two (2) repetitive statement
constructs used in PIL, WHILE and FOR loops.

WHILE/DO Loops
WHILE loops cause a statement or statement group to repeat as longs as a given boolean expression is
evaluated to be true.

SYNTAX: while <boolean expression> do <statement>

Simple WHILE loop construct

a := 0;
while a <= 10 do
begin
 a := a + 1;
 writeln(a);
end;

The above example counts from 1 to 10, displaying each number on your screen.

Its quite possible and legal that the boolean expression within a while statement to be initially evaluated as
false, causing the statements controlled by the loop never to be executed. In the above example, assume
we initially set the value of a to 20, then the a := a + 1; statement would never have executed.

FOR/TO/DO Loops
FOR loops cause a statement block to execute a specific number of times.

SYNTAX: for <control variable> := <source expression> to <target expression> do
<statement>

Simple FOR loop construct

a := 1;
for a := 1 to 10 do
begin
 writeln(a);
end;

The above example counts from 1 to 10, displaying each number on your screen. This is identical to what
the example for the WHILE loops does, but the for loop is much more efficient in performing the task.

FOR loops require a control variable, which must be numeric. The control variable is initially assigned the
value of the source expression, and subsequently modified by 1 during each iteration of the loop, executing
the statement block until it reaches the target expression value.

As with the WHILE loop, a FOR loop may never execute its statements, if the source expression value is
initially greater than the target expression value.

Conditional Statements

IF/THEN/ELSE Statement
IF statements allow your script to make decisions about what statements to execute based on a logical
expression that evaluates to either true or false.

Syntax: IF <expression> THEN <statement> [ELSE <Statement>]

Simple IF/THEN/ELSE statement construct

if a <> 0 then
 writeln('a does not equal 0')
else
 writeln('a does equal 0');

In it is not required than an ELSE clause be provided for each if statement, rather this is optional and may be
omitted entirely.

Simple IF/THEN statement construct (ELSE clause omitted)

if a <> 0 then
 writeln('a does not equal 0');

You can chain multiple IF/THEN/ELSE statements together, allowing your script to make a series of
decisions, by simply using another IF statement following an ELSE clause.

if a = 0 then
 writeln('a is 0')
else if a < 10 then
 writeln('a is greater than 0 but less than 10')
else if a < 50 then
 writeln('a is greater than 10 but less than 50')
else
 writeln('a is greater than 50');

Procedures & Functions

PIL currently doesn’t not allow user defined procedures and functions to be created within a script, however,
this will be implemented in future versions.
Procedures and functions are still an integral part of the PIL definition and the concepts and definitions need
to be understood by the programmer.

Since current implementations of PIL support only two primary variable types, this document will address
types as either being string or value.

Procedures
PIL defines a procedure as a subroutine or that acts as an individual statement. Procedures may not be
used as a component in an expression, as procedures themselves generate not assignable return value.

Functions
Functions, like procedures, are defined as subroutines, however, functions in and of themselves do not
constitute a complete statement. Functions may instead be used as a component in an expression, as all
functions by definition must return an assignable value.

This document will use the pascal standards for define of procedures and functions.

procedure procname(param[,param] : type[; [...]]);
function funcname(param[,param] : type[; [...]]) : type;

PIL Procedures and Function Reference
The following is a list of internally support procedures and functions, each of these is discussed later in this
document.

BREATHE
CHAR
COMMAND
FILEEXISTS
FILEREAD
FILESIZE
FILEWRITE
HALT
HASVOICE
INTTOSTR
ISOP
NICKCOUNT
NICKLIST
RANDOM
SNICKCOUNT
SNICKLIST
STRCOPY
STRDEL
STRINS
STRLEN
STRPOS
STRMATCH
STRUPPER
STRLOWER
STRTOKEN
STRTOINT
WRITELN

BREATHE
Declaration
procedure breathe;

Description
Breathe is used to allow the Microsoft Windows system to process messages during lengthy or time
consuming script operations. The use of this procedure is never a requirement. When breathe is called, the
PIL interpretor returns processor control back to the system and PIRCH will process any pending Windows
messages, including processing of incoming data from the server. NOTE: Because a PIRCH event may be
triggered during a breathe operation, you must take precautions against the same script being activated via
and event and causing recursion.

Example

begin
answer := 0;
for x := 1 to 5000 do
begin

breathe;
answer := answer + 2;

end;
writeln('the answer is ',answer);

end;

CHAR
Declaration
function char(index ; value) : string;

Description
Char is returns a 1 character length string holding the character at position index in the system’s character
table. For ASCII character sets index should be a value ranging from 0 to 255.

Example

begin
$chan := char(35)+’pirch’; { prefix # symbol }
command('/msg',' ',$chan,' ','hello all');

end;

COMMAND
Declaration
procedure command(v1,v2,...,vn);

Description
Use Command to issue IRC or PIRCH specific commands from within a PIL script. Separate multiple items
with commas within Command’s parenthesis. This items may be of different types, i.e. strings, values or
expressions. The resulting syntax of the parameters used for Command must result in a valid command line
string which PIRCH can interpret.

Example

begin
$chan := '#pirch';
command('/msg',' ',$chan,' ','hello all');

end;

FILEEXISTS
Declaration
function fileexists($filename : string) : value;

Description
Fileexists returns a boolean ordinal (0 = false, 1 = true), if filename exists on the system. Fileexists makes
no assumptions about the path for the file, therefore, you should use fully qualified filenames with this
function.

Example

begin
$filename := 'c:\pirch\logs\#pirch.log';
if Fileexists($filename) then
 writeln('#pirch log file was found')
else
 writeln('#pirch log file was NOT found');

end;

FILEREAD
Declaration
function fileread($filename : string; linenumber : value; VAR $s : string) : value;

Description
Fileread reads a string value from $filename. Linenumber may be 0, in which case fileread will read a
random line from the file, otherwise linenumber indicates the specific line to be read, where the first line in
the file is line number 1. $s must be a variable string type, which is filled with the information read from the
file. The return value is a boolean ordinal indicating whether or not the operation suceeded. (1 means the
operation was successful, 0 means it failed) Fileread makes no assumptions about the path for the file,
therefore, you should use fully qualified filenames with this function.

Example

begin
$filename := 'c:\pirch\logs\#pirch.log';
if fileexists($filename) then
begin
 if fileread($filename,-1,$s) then
 writeln($s)
 else
 writeln('unable to read a line');
end
else
 writeln('unable to find file: ',$filename);

end;

FILESIZE
Declaration
function filesize($filename : string) : value;

Description
Filesize returns a value indicating the size in bytes of a file indicated by $filename. Filesize makes no
assumptions about the path for the file, therefore, you should use fully qualified filenames with this function.
If the file is not found, or other error occurs during an attempt to retrieve the file size, this function will return -
1.

Example

begin
$filename := 'c:\pirch\logs\#pirch.log';
if Fileexists($filename) then
begin
 size := filesize($filename);
 writeln('#pirch log file size is ',size,' bytes');
end
else
 writeln('#pirch log file was NOT found');

end;

FILEWRITE
Declaration
function filewrite($filename : string; linenumber : value; $s : string) : value;

Description
Filewrite reads a string value to $filename. Linenumber may 0, in which case filewrite will append $s to the
end of the file, or linenumber maybe any other value indicating the line number: If the value is negative, the
existing line at position linenumber will be replaced; if the value is positive, the line will be inserted at
position linenumber. For example, indicating linenumber as -1 would cause the first line to be replaced with
the information in $s. If linenumber is set to 1, then $s would be inserted as the first line in the file and any
other lines will be pushed downward. The return value is a boolean ordinal indicating whether or not the
operation suceeded. (1 means the operation was successful, 0 means it failed) Filewrite makes no
assumptions about the path for the file, therefore, you should use fully qualified filenames with this function.

Example

begin
$filename := 'c:\pirch\logs\#pirch.log';
if fileexists($filename) then
begin
 if filewrite($filename,0,$s) then
 writeln('operation complete')
 else
 writeln('operation failed');
end
else
 writeln('unable to find file: ',$filename);

end;

HALT
Declaration
procedure Halt;

Description
Halt causes a script to terminate, and is useful when you want to stop processing depending on a given
condition.

HASVOICE
Declaration
function hasvoice(channel : string; nickname : string) : boolean;

Description
Hasvoice returns true (1) if the nickname has a voice in a moderated in channel. Otherwise it returns false
(0). While all channel operators, effectively have a voice in moderated channels, this function looks only at
the +v mode state. If the operator has +v set then the function will return true, otherwise false. If testing
sctrictly on who can and can not talk in a channel, use the Isop function in addition to the Hasvoice function.

Example

begin
$nick := 'billy';
$chan := '#mychannel';
if hasvoice($chan,$nick) then
 writeln($nick,' can talk on ',$chan)
else
 writeln($nick,' can not talk on ',$chan);

end;

INTTOSTR
Declaration
function inttostr(n : value) : string;

Description
Inttostr converts a value a string representation of the value.

Example

begin
value := 12345;
$s := inttostr(value);

end;

ISOP
Declaration
function isop(channel : string; nickname : string) : boolean;

Description
Isop returns true (1) if the nickname is a channel operator on channel. Otherwise it returns false (0).

Example

begin
$nick := 'billy';
$chan := '#mychannel';
if isop($chan,$nick) then
 writeln($nick,' is an op on ',$chan)
else
 writeln($nick,' is not an op on ',$chan);

end;

NICKCOUNT
Declaration
function nickcount(channelname : string) : value;

Description
Nickcount returns the number of names in the channel names list.

Example

begin
$chan := '#pirch';
for i := 1 to nickcount($chan)do
 writeln(nicklist($chan,i));

end;

NICKLIST
Declaration
function nicklist(channelname : string; index : integer) : string;

Description
Nicklist returns the nickname at position indicated by index. If index is greater than the number of total
persons in the channel, nicklist returns an empty string. The first name is at index 1.

Example

begin
$chan := '#pirch';
for i := 1 to nickcount($chan)do
 writeln(nicklist($chan,i));

end;

RANDOM
Declaration
function random(range : value) : value

Description
Random returns a random number ranging from 0 to range.

Example

begin
DiceA := random(5)+1;
DiceB := random(5)+1;
writeln('You rolled a ',DiceA,' and a ',DiceB);

end;

SNICKCOUNT
Declaration
function snickcount(channelname : string) : value;

Description
Scount returns the number of entries in the channel names list that are highlighted. If no names are
highlighted then the function returns 0.

Example

begin
$chan := '#pirch';
for i := 1 to snickcount($chan)do
 writeln(snick($chan,i));

end;

SNICKLIST
Declaration
function snicklist(channelname : string; index : integer) : string;

Description
Snicklist returns the selected nickname at the position indicated by index. If index is greater than the number
of total persons who’s names are highlighted in the channel, snicklist returns an empty string. The first
selected name is at index 1.

Example

begin
$chan := '#pirch';
for i := 1 to snickcount($chan)do
 writeln(snicklist($chan,i));

end;

STRCOPY
Declaration
function strcopy($s : string; index, len : value) : value;

Description
Strcopy is used to return a sub-string from within $s, starting at index and is at most len characters long. If
there are fewer characters in $s from index to the end of $s than len, strcopy returns only as many
characters as it can.

Example

begin
$msg := 'this is a test';
$newmsg := strcopy($msg,1,4);
writeln($newmsg);

end;

STRDEL
Declaration
procedure strdel(var $s : string; index, len : value) : value;

Description
Strdel removes len characters from $s starting at index. $s must be a string variable. If there are fewer
characters in $s from index to the end of $s than len, strdel removes only as many characters as it can.

Example

begin
$msg := 'this is a test';
strdel($msg,1,4); {remove the word ‘this’}
writeln($msg);

end;

STRINS
Declaration
procedure strdel($source : string; VAR $target : string; index : value) : value;

Description
Strins inserts $source into $target at position index.

Example

begin
$msg := 'this is a test';
strins('new ',$msg,11);
writeln($msg);

end;

STRLEN
Declaration
function strlen($s : string) : value;

Description
Strlen returns the length of a string.

Example

begin
$msg := 'this is a test';
len := strlen($msg);
writeln('The length of the message is ',len);

end;

STRLOWER
Declaration
function strlower($s : string) : string;

Description
Strlower returns the a copy of the string parameter with all letters converted to lowercase.

Example

begin
$msg := 'This is a test';
$msg := strlower($msg);
writeln($msg);

end;

STRPOS
Declaration
function strpos($searchstr, $s : string) : value;

Description
Strpos returns the position at which $searchstr is found within $s. If $searchstr is not found, strpos returns 0.

Example

begin
$msg := 'This is a test';
index := strpos('is',$msg);
writeln('“is” was found at position ',index);

end;

STRMATCH
Declaration
function strmatch($pattern, $s : string) : value;

Description
Strmatch returns a boolean ordinal indicating whether or not $s matches a pattern specified in $pattern.
$pattern may use question marks (?) and/or asterisks (*) as wildcards.

Example

begin
$msg := 'This is a test';
$pattern := '*is*';
if strmatch($pattern,$msg) then
 writeln('it matches')
else
 writeln('no match');

end;

STRTOINT
Declaration
function strtoint($s : string) : value;

Description
Strtoint converts a string to a value. The string $s must contain only the character ’0’..’9’.

Example

begin
$s := '12345';
value := strtoint($s);

end;

STRTOKEN
Declaration
function strtoken(var $s : string) : string;

Description
Strtoken removes and returns the first word from within a $s.

Example

begin
$msg := 'This is a test';
$newmsg := strtoken($msg);
writeln(newmsg,' : ',$msg);

end;

STRUPPER
Declaration
function strupper($s : string) : string;

Description
Strupper returns the a copy of the string parameter with all letters converted to uppercase.

Example

begin
$msg := 'This is a test';
$msg := strupper($msg);
writeln($msg);

end;

WRITELN
Declaration
procedure writeln(v1,v2,...,vn);

Description
Use writeln to write information to a PIRCH window. By default, writeln will use the server window, from
which the PIL script is associated, however this may changed by setting the PIRCH system variable
DEBUGWIN with the /set command. The following demonstrates on way of redefining the target output
window from the PIRCH command line.

/newwindow DEBUG
/set debugwin DEBUG

Separate multiple items with commas within writeln’s parenthesis. This items may be of different types, i.e.
strings, values or expressions.

Example

begin
answer := 25 * 4;
writeln('The result is ',answer);

end;

